Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip

Identifieur interne : 009710 ( Main/Repository ); précédent : 009709; suivant : 009711

Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip

Auteurs : RBID : Pascal:06-0045739

Descripteurs français

English descriptors

Abstract

This paper deals with the sensitivity to polarization of multiple quantum wells (MQW) semiconductor InGaAs/InP saturable absorbers in Fabry-Perot (F-P) micro-cavity used as nonlinear mirrors (NLM) under normal incidence. This sensitivity to polarization is due to an anisotropy of MQW materials. In this experimental study, we localize the singular axis of the crystal and we determine the conditions where the sensitivity to polarization is the most evident. Then, we examine the reflectivity of the NLM as a function of the wavelength and the polarization of the input optical signal and the temperature of the chip. Finally, we try to assess the consequences for a 2R regenerator (for re-amplification and re-shaping) based on those NLM by evaluating the polarization dependent losses according to the wavelength of the input signal and the temperature of the chip.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0045739

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip</title>
<author>
<name sortKey="Le Cren, Elodie" uniqKey="Le Cren E">Elodie Le Cren</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Auckland, Physics Department, Building 303, 38 Princes Street</s1>
<s2>Auckland</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lobo, Sebastien" uniqKey="Lobo S">Sébastien Lobo</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>ENSSAT, Laboratoire d'Optronique, CNRS UMR 6082, 6 Rue de Kérampont BP 80518</s1>
<s2>22305 Lannion</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
<settlement type="city">Lannion</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feve, Sylvain" uniqKey="Feve S">Sylvain Feve</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>ENSSAT, Laboratoire d'Optronique, CNRS UMR 6082, 6 Rue de Kérampont BP 80518</s1>
<s2>22305 Lannion</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
<settlement type="city">Lannion</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Simon, Jean Claude" uniqKey="Simon J">Jean-Claude Simon</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>ENSSAT, Laboratoire d'Optronique, CNRS UMR 6082, 6 Rue de Kérampont BP 80518</s1>
<s2>22305 Lannion</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
<settlement type="city">Lannion</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">06-0045739</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 06-0045739 INIST</idno>
<idno type="RBID">Pascal:06-0045739</idno>
<idno type="wicri:Area/Main/Corpus">009602</idno>
<idno type="wicri:Area/Main/Repository">009710</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0030-4018</idno>
<title level="j" type="abbreviated">Opt. commun.</title>
<title level="j" type="main">Optics communications</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Dichroism</term>
<term>Experimental device</term>
<term>Experimental study</term>
<term>Fabry-Perot resonators</term>
<term>Indium Gallium Arsenides</term>
<term>Indium Phosphides</term>
<term>Multiple quantum well</term>
<term>Non linear mirror</term>
<term>Optical microcavity</term>
<term>Optical polarization</term>
<term>Optical signal</term>
<term>Saturable absorbers</term>
<term>Semiconductor devices</term>
<term>Temperature dependence</term>
<term>Ternary compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Polarisation optique</term>
<term>Absorbant saturable</term>
<term>Puits quantique multiple</term>
<term>Dépendance température</term>
<term>Dispositif semiconducteur</term>
<term>Dichroïsme</term>
<term>Indium Gallium Arséniure</term>
<term>Composé ternaire</term>
<term>Indium Phosphure</term>
<term>Composé binaire</term>
<term>Résonateur Fabry Pérot</term>
<term>Microcavité optique</term>
<term>Signal optique</term>
<term>Dispositif expérimental</term>
<term>Etude expérimentale</term>
<term>InGaAs</term>
<term>InP</term>
<term>As Ga In</term>
<term>In P</term>
<term>InGaAs/InP</term>
<term>4260D</term>
<term>Miroir non linéaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper deals with the sensitivity to polarization of multiple quantum wells (MQW) semiconductor InGaAs/InP saturable absorbers in Fabry-Perot (F-P) micro-cavity used as nonlinear mirrors (NLM) under normal incidence. This sensitivity to polarization is due to an anisotropy of MQW materials. In this experimental study, we localize the singular axis of the crystal and we determine the conditions where the sensitivity to polarization is the most evident. Then, we examine the reflectivity of the NLM as a function of the wavelength and the polarization of the input optical signal and the temperature of the chip. Finally, we try to assess the consequences for a 2R regenerator (for re-amplification and re-shaping) based on those NLM by evaluating the polarization dependent losses according to the wavelength of the input signal and the temperature of the chip.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0030-4018</s0>
</fA01>
<fA02 i1="01">
<s0>OPCOB8</s0>
</fA02>
<fA03 i2="1">
<s0>Opt. commun.</s0>
</fA03>
<fA05>
<s2>254</s2>
</fA05>
<fA06>
<s2>1-3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LE CREN (Elodie)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LOBO (Sébastien)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FEVE (Sylvain)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SIMON (Jean-Claude)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Auckland, Physics Department, Building 303, 38 Princes Street</s1>
<s2>Auckland</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>ENSSAT, Laboratoire d'Optronique, CNRS UMR 6082, 6 Rue de Kérampont BP 80518</s1>
<s2>22305 Lannion</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>96-103</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14750</s2>
<s5>354000131829780110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0045739</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Optics communications</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper deals with the sensitivity to polarization of multiple quantum wells (MQW) semiconductor InGaAs/InP saturable absorbers in Fabry-Perot (F-P) micro-cavity used as nonlinear mirrors (NLM) under normal incidence. This sensitivity to polarization is due to an anisotropy of MQW materials. In this experimental study, we localize the singular axis of the crystal and we determine the conditions where the sensitivity to polarization is the most evident. Then, we examine the reflectivity of the NLM as a function of the wavelength and the polarization of the input optical signal and the temperature of the chip. Finally, we try to assess the consequences for a 2R regenerator (for re-amplification and re-shaping) based on those NLM by evaluating the polarization dependent losses according to the wavelength of the input signal and the temperature of the chip.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B60D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Polarisation optique</s0>
<s5>50</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical polarization</s0>
<s5>50</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Absorbant saturable</s0>
<s5>51</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Saturable absorbers</s0>
<s5>51</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>52</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>52</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>52</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>53</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>53</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Dispositif semiconducteur</s0>
<s5>54</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Semiconductor devices</s0>
<s5>54</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Dichroïsme</s0>
<s5>55</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Dichroism</s0>
<s5>55</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>56</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>56</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>57</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>57</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>58</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>58</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>59</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>59</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Résonateur Fabry Pérot</s0>
<s5>60</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Fabry-Perot resonators</s0>
<s5>60</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Microcavité optique</s0>
<s5>61</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Optical microcavity</s0>
<s5>61</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Signal optique</s0>
<s5>62</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Optical signal</s0>
<s5>62</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Señal óptica</s0>
<s5>62</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Dispositif expérimental</s0>
<s5>63</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Experimental device</s0>
<s5>63</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Dispositivo experimental</s0>
<s5>63</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>64</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>64</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>78</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InGaAs/InP</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>4260D</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Miroir non linéaire</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Non linear mirror</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>023</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 009710 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 009710 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:06-0045739
   |texte=   Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024